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Long-Time Behavior of the Lorentz Electron Gas in a 
Constant, Uniform Electric Field 
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The long-time behavior of the Lorentz electron gas is studied in the presence 
of a uniform external field. A discussion of the rigorous solution of the 
one-dimensional Boltzmann equation is followed by the derivation of the 
asymptotic form of the velocity distribution in an arbitrary number of 
dimensions. The system is shown to absorb energy from the field without 
bounds, which excludes the usually assumed steady state with finite thermal 
energy density. 
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1. I N T R O D U C T I O N  

In 1905 H. A. Lorentz  published an extensive study of  the mot ion of  electrons 
in metals based on a simple kinetic model. (1) Assuming that  (i) e lectron-  
electron encounters may be neglected, (ii) the interaction between the elec- 
trons and the a toms in the metal can be approximated by collisions between 
hard spheres, and (iii) the a toms can be looked upon as immobile scattering 
centers, their masses being sufficiently big compared  to the electron masses, 
he arrived at the corresponding Boltzmann equation for the electron distribu- 
tion function 

+ V.~r + E .  f ( r ,  v, t) = r - 1)f(r, v, t) (1) 

Here r, v, and t denote the position, velocity, and time, respectively, E is the 
acceleration due to the electric field, nA stands for the number  density o f  the 
scattering atoms, and R = rA + re is the sum of  the a tomic and electronic 
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radii. The collision term contains a projection operator /~ =/~2 which 
averages the distribution f(r, v, t) over all directions in the velocity space 

1 f df~vf(r,  v, t) (2) Pf(r, v, t) = 

The mean free path of the electrons is given by 

= ( ~ n A R ~ )  - 1  (3) 

Lorentz proposed a method for constructing an approximate stationary 
solution of Eq. (1), assuming it to have the form of the sum of a local Maxwell- 
Boltzmann distribution and an appropriate small correction. He argued that 
this correction would always remain small, provided the spatial temperature 
and density gradients, and also the electric field, were sufficiently weak. Most 
of the results known at his time in the theory of the electrical conduction in 
metals could then be derived, at least qualitatively, from this general stand- 
point. In particular he could reproduce the predictions of Drude's theory. 

We shall show in this paper that the correctness of Lorentz's conclusions 
depends highly on the time scale involved, for, for physically relevant initial 
conditions, solutions of Eq. (1) tend eventually to a well-defined asymptotic 
distribution, completely different from the Maxwell-Boltzmann one. Of 
course, the classical Lorentz model is not used in the theory of metals any 
more. However, it still finds a number of applications, and, due to its simplicity, 
serves for illustrating the methods of the modern kinetic theory and testing 
various perturbation schemes. ~2'3~ From this point of view the knowledge of 
the long-time behavior of the distribution function satisfying Eq. (1) is 
certainly of interest, One can test, e.g., the so called two-term approximation 
used in solving the realistic Boltzmann equation for the electron motion5 4~ 

The electric field will be supposed here to be constant and uniform all 
over the system. To begin with, we present in Section 2 the analysis of the 
rigorous solution of a one-dimensional version of Eq. (1). We infer from it a 
method for determining the asymptotic form of the velocity distribution by an 
appropriate series expansion (Section 3), which is then applied to the three- 
dimensional case in Section 4. The interpretation of the final results and the 
possibility of applying the methods of this paper to more general problems is 
discussed in Section 5. 

2. O N E - D I M E N S I O N A L  CASE:  THE  EXACT S O L U T I O N  

In one dimension, only two directions of velocity are possible. The 
action of the projector ~ thus reduces to replacing the complete distribution 
by its symmetric part 

Pf(x,  v, t) = fS(x ,  v, t) = �89 v, t) + f ( x ,  - v, t)] (4) 
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and Eq. (1) takes the form 

+ v ~ + E f ( x ,  v, t)  = - f ~ ( x ,  v, t)  (5) 

wheref  a denotes the antisymmetric part o f f  

f~ -- (1 - ff)f  (6) 

Due to the energy conservation the solution of the initial value problem for 
Eq. (5) can be reduced to that corresponding to the spatially homogeneous 
case. This follows from the remark that iff~o(V, t) satisfies Eq. (5) with the 
initial condition 

Lo(V,  o)  = ~(v - Vo) (7) 
then the distribution 

fxovo(X, v, t )  = fro(v, t)  ~{(�89 2 - E x  - �89 2 + Exo ) / E )  (8) 

is another solution of Eq. (5) corresponding to the initial condition 

fxo~o(x, v, O) = 3(x - xo) a(v - vo) (9) 

Thus the conservation of the one-particle energy �89 2 - Ex ,  which appears 
in the argument of the Dirac ~ in Eq. (8), determines here the spatial distribu- 
tion once the velocity distribution is given. Keeping this in mind, we shall 
study from now on the homogeneous equation 

For the sake of simplicity the initial condition 

f ( v ,  0) = 3(v) (11) 

will be considered here [one can also find the rigorous solution of a more 
general problem (7)]. Equation (10) is equivalent to a system of two coupled 
equations for the symmetric and antisymmetric parts off :  

+ f~ + E-~f = 0 (12a) 

O s a ~ f  + E - ~ v f  = 0 (12b) 

where, in accordance with Eq. (11), we put 

f s ( v ,  O) = 3(v), fa (v ,  0) = 0 (13) 

Equations (12a) and (12b) imply the following second-order equation forf~: 

(a2 _ E 2  a2 I__~) ~ b-~ ~ + ~ f = 0 (14) 
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Applying to it the Laplace transformation and taking into account the initial 
condition (13), we get 

[~2 z ] 1 3'(v) (15) 
where 

and 3'(v) is the derivative 
symmetric solution of Eq. 
sider the Airy equation 

~b(v, z) = dt e-Ztfa(v, t), Re z > 0 

of the 3 distribution. Our aim is to find the anti- 
(15), integrable over velocity. To this end we con- 

(d2/ds 2 - s ) A i ( s )  = 0 

which has two linearly independent solutions 

Ai ~ (s) = sllgI~ 1/3(~s a/2) 

(16) 

(17) 

where Ilia and I_ 1/3 are the modified Bessel functions with indices �89 and --}. 
When v > 0, Eq. (15) reduces to Eq. (16) upon puttings = (z/),E2)~13(v + Az). 
It is thus clear that the antisymmetric solution will have the form 

~b(v, z) = {2E Ai[(z/hE2)ll3hz]}- l{0(v) Ai[(z/hEZ)~I3(v + hz)] 

- O ( - v ) A i [ ( z / h E 2 ) l ' 3 ( - v  + hz)]} (18) 

where 0 is the Heaviside step function. The factor {2EAi[(z/hE2)ll3Az]} -~ 
guarantees that ~b(v, z) has the proper jump at v = 0, leading to the inhomo- 
geneous term E-  1 3'@) in Eq. (15). It turns out that the integrability condition 
determines (up to an unimportant constant factor) the choice of the solution 
of the Airy equation. The analysis of the behavior of the modified Bessel 
functions for [z[ -+ ov shows (5~ that we have to put 

Ai(s) - slI2Klla(Z3s 312) (19) 
where 

K~/a = (~r/3~/2)(I-~ia - Ii13) (20) 

is a modified Bessel function of the third kind (also called a Macdonald 
function). Equations (18)-(20) together yield the physically relevant solution 
of Eq. (15). 

It is important to note that the function Ai(s) can be represented by a 
power series in the whole complex plane (see, e.g., the series representations 
of Bessel functions in Ref. 5). Moreover, at s = 0 we get Ai(0) = �89 
r 0. This allows us to conclude that the function ~b^S(v, z) defined by 

CAS(v, z) = [2E Ai(0)]- l{0(v) Ai[(z/AE2)ilav] 

- 0 ( -  v) A i [ -  (z/hE2)~/av]} (21) 
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gives the proper asymptotic representation of the Laplace transform (18) of 
f a  for small values of z. It can thus be used for the determination of the 
asymptotic form offa(v, t) for long times. In accordance with Eq. (19), 

Ai[(z/)~E2)l'3[v[] = [vIl12(z/hE2)I/tK~la[~lv13/2(z/hE2) ~/2] (22) 

Using the remarkable result of the theory of integral transforms (~ 

a-~t2z~f2Kv(2atl2zll2) = -~ dt e-~t t -V-le  -alt, Re a > 0 (23) 

we can thus readily find the inverse Laplace transform of ~aS(v, z) by putting 
v = �89 and a = [vla/91E 2. The resulting asymptotic form o f f  a reads 

v -[vI3 (24) 
fa(v,  t) = 2r(�89 exp 9;~E2t 

Combining this result with Eq. (12), we find the corresponding asymptotic 
formula for the symmetric part of the velocity distribution 

31,  (25) fS(v, t) = 2F(�89 exp 9AEZ t 

It can be checked that the normalization condition 

f ~= dvf~(v, t) = (26) 1 
oo 

is satisfied. In general, using the formula 

fj '(i) dy exp(-y") = ~ F , Re/x > 0 (27) 

we find 

Mk(t) = ~ dv [vlkf(v, t ) =  (9 ) tE2 t )~ '3F(~ f l - - ) /F (~)  ,~ t ~'3 (28) 

Equation (28) implies that the kinetic energy of electrons tends to infinity as 
t 2f3. Clearly, they absorb it from the electric field. In Eq. (5) there is no 
mechanism for transmitting this energy to the atoms, and the system, being 
heated without bounds, cannot reach a steady-state regime with finite thermal 
energy density. 

Equations (24) and (25) indicate that for long times it is natural to 
express the distribution f(v, t) in terms of variables t and u = vt -~/3. This 
remark will be of fundamental importance for the analysis carried out in the 
next two sections. 
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3. L O N G - T I M E  E X P A N S I O N  OF THE VELOCITY  
D I S T R I B U T I O N  IN ONE D I M E N S I O N  

According to Eqs. (24) and (25), for long times the velocity distribution 
takes the form 

fA~(v, t) = t-  1/~[r 1/3) + t-2/3r t- 1/3)] (29) 

This suggests that one could study it in a more systematic way by using an 
expansion of  the form 

f(v, t) = t -113 ~ t-2kI3dp~(vt -113) (30) 
k = O  

Let us denote by q~2 and q~k ~ the symmetric and antisymmetric parts of 4'k, 
respectively. Using variables t and u = vt-~/3, and inserting expansion (30) 
into Eqs. (12a) and (12b), we get a hierarchy of equations for the functions 
q~k" and ~bk" of the form 

k = 0: 4,o ~" = 0 

E! du ~~ = 0 (31 a) 

k = l :  du d~~ + del~ = 0 

d d 
au (ur176 - 3E ~u 41 = 0 

k = 2, 3,...: 

(31b) 

u~-~ q~_ 2 + (2k - 3)4,~_ ~ - 3E q~_~ - 3 q~k a = 0 

U~u u ~b~_l + (2k - 1)r - 3E q~  = 0 

(31c) 

They represent conditions for the vanishing of the coefficients of consecutive 
powers of variable ( t -  2/3). The first pair of equations (k = 0) tells us that the 
function q~o is symmetric. The next pair (k = 1) yields a homogeneous system 
of equations for q~0 S and 4,1 ~. The second equation of this pair is equivalent 
to the relation 

U~o ~ - 3E4~1 ~ = 0 (32) 

a .lu[ 
3E~ ~ ~~ + - 7 -  ~~ = 0 (33) 

We thus find 

which implies 
q~oS(U) = C exp(-]ul3/9aE 2) (34) 
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Imposing the normalization condition (26), we determine the constant C, 
recovering formula (25). Then ffl ~ calculated from Eq. (32) reproduces the 
previous result (24). 

Let us proceed further and examine the pair of equations corresponding 
t o k  = 2: 

du (~? + ~ = 0 

u ~ ~ + 3 ~ ?  - 3 E  ~2 ~ = o 

(35) 

The solution here reads 

d -rul3 fo', jw? ~lS(u) = C1 j~ exp ~ aw exp 9-~-- ~ 
~ t  d 

E)~ d 

~(u)  = -~T & ~ (~) 

(36) 

When Iu] --+ o% r ,,~ ]u]-a. Hence, if we require that moments o f r  s exist 
[see Eq. (28)], we must put the constant (71 equal to zero. In fact we could 
have assumed from the very beginning that r  = r  _ 0, k = 0, 1,..., 
as these functions are not coupled by the hierarchy (31) to those with indices 
of opposite parity, i.e., r and ~ + ~ ,  k = 0, 1 ..... We thus see that for a 
physically relevant class of  distributions the first two leading terms in expan- 
sion (30) are entirely determined by ~o s and Ca, and do not depend on the 
initial condition. The same is then also true for the long-time asymptotic 
behavior of the moments of the velocity distribution. We conclude that the 
asymptotic state of the system in the region 

t --~ 0% v < t lta (37) 

is well defined (i.e., independent of the state at t = 0), and corresponds the 
velocity distribution of the form 

31,3 ( v) 
fAd(V, t) = 2F(k)(AE2t)~/a 1 + ~ -  exp 9AE2 t (38) 

We could in principle proceed further, solving consecutively pairs of equations 
in the hierarchy (31) with k = 3, 4 ..... In this sense expansion (30) enables us 
to study systematically the long-time behavior of f (v ,  t). What is even more 
interesting, it can be generalized in a straightforward way to three dimen- 
sions. This problem will be discussed in the next section. 
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L O N G - T I M E  B E H A V I O R  OF A T H R E E - D I M E N S I O N A L  
L O R E N T Z  G A S  

In a spatially homogeneous case Eq. (1) reduces to 

+E.~)f(v,t) ]--~-(P-1)f(v,t) (39) 

If  fro satisfies Eq. (39) with the initial condition 

fro(v, 0) = 8(v - %) (40) 
then the distribution 

f<ro.E)vo(r, v, t) = fro(v, t) 8{(�89 2 - E . r  - �89 2 + E.ro)/iEI} (41) 

represents the solution of Eq. (1) corresponding to the initial condition 

f~ror~vo(r, v, 0) = 8(v - v0) 8{E.(r - ro)/lEl} (42) 

This shows that knowing the evolution of  the homogeneous solutions, one 
can also determine that of spatially inhomogeneous distributions, provided 
the inhomogeneity occurs only in the direction of the electric field. Energy 
conservation does not suffice to find the spatial distribution in the directions 
perpendicular to the vector E (there was no such problem in one dimension). 
Leaving this question open, we shall concentrate on establishing the long-time 
behavior of the homogeneous solutions. Proceeding as in the one-dimensional 
case, we define functions 

f~ =/3f ,  f~  = (1 - P)f (43) 

and replace Eq. (39) by the system of equations 

~ f  + P  E. f ~ = 0  

(44) 

~ f  + ( 1 - P )  E.Fv f + E.~-~ f + f ~ = 0  

The results of the previous sections indicate that in the asymptotic region 
(37) the distr ibutionsf  S a n d f  ~ take the form 

t -  lr ) (45) 
and 

t- 5/%~( v / t l/a) (46) 

respectively. The factor t -  ~ in (45) guarantees the time independence of  the 
normalization o f f :  

f dvf(v,t)= f du ~boS(lul)=1 (47) 
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Insert ingf  s a n d f  ~ in the forms (45) and (46) into Eq. (44), we find 

( ~ u ~ + d  0 4  ~ - P ( E . ~ ) 4 ~ - - 0  

(48) 
E.~-u ~ + 3 

where u = vt -1/3, u = lu]. The term in the brackets can be neglected in the 
long-time region (37). Hence 

d 4~ (49) u24 ~ = - ~ ( E . u )  i u  

Using this relation and the formula 

P [ ( E . u ) u ]  = ~u2E (50) 

we arrive at the following equation for ~s: 

AE2u-~ + (AE ~ + u3)~u + 3u 2 r = 0 (51) 

Its normalized solution reads 

4S(u) = (4~rAE 2) -1 e x p ( -  ua/3AE 2) (52) 

From Eqs. (45)-(49) we conclude that in three dimensions the long-time 
behavior of the velocity distribution satisfying Eq. (39) is given by 

1 ( E-v) -[v, 8 
fA~(v,t) = 4 ~  1 + ~  e x p ~  (53) 

The dominant part of the distribution has spherical symmetry. Its moments 
follow the same power laws as in the one-dimensional case [see Eq. (28)] 

M~(t) ,~ t ~18 (54) 

In particular, the second moment diverges as t 2/a, which reflects the fact that 
the energy absorbed by electrons from the field cannot be transferred to the 
atoms of  the metal. This makes the model rather unphysical. One can also 
calculate the average power absorbed by an electron, 

= f dv mfE.v)f^S(v, t) = mF(~)(A2E~/3t)lta P(t) (55) 

P(t) tends to zero as t-1/a, which shows the weakening of the influence of the 
field on the gas as the number of  rapid particles increases. 
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5. D I S C U S S I O N  

Our results show that the Lorentz model of the electron gas in metals 
leads to an unrealistic behavior for long times. Even if the electric field is 
very weak, the velocity distribution will finally tend to its asymptotic form 
(53). At fixed mean free path A the collision frequency tends to infinity (as 
t ~/3), and rapid collisions with spherical scattering centers make the dominant 
term in f(v, t) spherical, too. The distribution of velocities is asymptotically 
centered about v = 0, and becomes flatter and flatter, diffusing gradually over 
the whole velocity space. No stationary regime with finite thermal energy 
density is possible. 

This picture is completely different from that considered in Lorentz's 
paper, (1) showing the restricted validity of the arguments presented there. 
In fact Lorentz studied the distribution of the form 

f(x, v) = f•B(x, v) + 8f(x, v) (56) 

where MB denotes Maxwell-Boltzmann, and 

-~ + [vT fM~(x, v) 

Considering a metallic wire, he assumed that the spatial inhomogeneity 
occurred only in the direction of the field (x direction). As shown in Section 
4, this is precisely the situation that can be reduced to solving the homo- 
geneous equation (39). And although for small spatial gradients and weak 
electric field the distribution (56) approximately satisfies Eq. (1), it will 
nevertheless be transformed (when one waits long enough) and lead to the 
asymptotic results of Section 4. 

The solution of the form (56) has been also discussed by Wang Chang 
and Uhlenbeck, (3) who studied a much more general case with the external 
force field oscillating with a given frequency oJ. Their results referring to the 
Lorentz gas (see Section 6 in Ref. 3) at oJ = 0 are again in contradiction with 
the asymptotic behavior established here, as they depend crucially on the 
assumption that the system stays close to the equilibrium Maxwell-Boltzmann 
distribution. 

In order to solve Boltzmann's equation with realistic collision terms, one 
often assumes that the velocity distribution is almost spherical, and truncates 
the general expansion 

f(r, v, t) = ~ fk(r, Iv[, t)Pk(E'v/IE[ lvl) (57) 
/ r  

after the first two terms (the Pk are the Legendre polynomials). <*) Equation 
(53) shows that for the Lorentz gas this two-term approximation works 
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perfectly well (at least for  long times). On the other  hand,  the well-known 
relaxation t ime approx imat ion  does not  make  any sense in our  case. 

Before closing, let us indicate the possibility of  generalizing our  results. 
The  methods  used in this paper  also can be applied at  d dimensions (d = 
1, 2,...) for finding the long-t ime solutions of  the equat ion 

+ E .  f (v ,  t) = A-11vI~(P - 1)f(v, t), n > - 1  (58) 

The long-t ime expansion of  the distr ibution f here takes the fo rm 

f (v ,  t) = t -a/~+2~ ~ t-(n+l>k/("+2~k(vt-1/("+2~) (59) 

Fol lowing the analysis described in Sections 3 and 4, we find (t --> 0% [v] ~< 
t l / ( n  + 2)) 

d(E_. v)_ ] - d l v [  "+2 
fAd(v, t )  = Ct -a/<~+2~ 1 + E2(n + 2)t] exp AE~t(n  + 2) 2 (60) 

The  normal iza t ion  condit ion yields 

(n + 2)P[d/2] I d ]a/c~+2, 
C = 2~ra/Zr[d/(n + 2)] _aEZ(n + 2) 2] (61) 

I t  may  be interesting to note that  something  peculiar must  happen  when 
n --> - 2. Our  analysis does not  apply  to this case. For  any n > - 1 the average 
energy diverges (when t - +  oo) as t 2/("+2~ 
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